

## Oscillating Baffled Flow Crystallizer

From batch to continuous crystallization

| Project:        | CS-01-08                             |
|-----------------|--------------------------------------|
| Project leader: | Henk Akse                            |
| E-mail:         | henk.akse@traxxys.com                |
| Partners:       | Nitech, Cosun, Purac, Croda, NL GUTS |
| Budget:         | 50 K€                                |
| Duration:       | Succesfully completed                |

#### Incentive:

- Significant reduction in crystallization time (from 8 hours down to 15 minutes)
- Continuous production: no batch to batch variation
- Better filterability
- Narrower particle size distribution
- Many independent operating variables to affect the crystallization process
- · Many design parameters to optimize crystallizer design for specific mixtures

### **Objective**:

Proof of principle of continuous crystallization of real product mixtures from participating companies leading to reduction of crystallization time.

### Approach:

Nitech Labs investigated Mixing conditions, Amplitude, Frequency, Starting temperature, End temperature, Cooling profile, Seeding, Hold times, concentration/ solvent, ratio/solids loading and Filtration index.

OBFC consists of a tubular crystallizer through which the mixture is pumped continuously that has to be crystallized.

- 1. Superimposed on the feed flow is an additional flow that can be manipulated in amplitude and frequency.
- 2. The tubular Crystallizer contains baffles with orifices perpendicular to feed flow. This introduces various design parameters: distance between baffles, diameter of orifices, variation in diameter and distance along the tube.
- 3. It is possible to superimpose a heating and/or cooling profile axially along the tubular crystallizer.

### **Results:**

Three Proof of Principle tests performed Successful combinations of OBFC/mixtures identified.

# **TECHNOPROJECTS**